§ 29.521 be used in design if it can be demonstrated that the forward velocity selected would not be exceeded in a normal one-engine-out landing. (d) Auxiliary float immersion condition. In addition to the loads from the landing conditions, the auxiliary float, and its support and attaching structure in the hull, must be designed for the load developed by a fully immersed float unless it can be shown that full immersion of the float is unlikely, in which case the highest likely float buoyancy load must be applied that considers loading of the float immersed to create restoring moments compensating for upsetting moments caused by side wind, asymmetrical rotorcraft loading, water wave action, and rotorcraft inertia. [Amdt. 29–3, 33 FR 966, Jan. 26, 196; as amended by Amdt. 27–26, 55 FR 8002, Mar. 6, 1990] ## §29.521 Float landing conditions. If certification for float operation (including float amphibian operation) is requested, the rotorcraft, with floats, must be designed to withstand the following loading conditions (where the limit load factor is determined under §29.473(b) or assumed to be equal to that determined for wheel landing gear): - (a) Up-load conditions in which— - (1) A load is applied so that, with the rotorcraft in the static level attitude, the resultant water reaction passes vertically through the center of gravity; and - (2) The vertical load prescribed in paragraph (a)(1) of this section is applied simultaneously with an aft component of 0.25 times the vertical component - (b) A side load condition in which— - (1) A vertical load of 0.75 times the total vertical load specified in paragraph (a)(1) of this section is divided equally among the floats; and - (2) For each float, the load share determined under paragraph (b)(1) of this section, combined with a total side load of 0.25 times the total vertical load specified in paragraph (b)(1) of this section, is applied to that float only. [Amdt. 29-3, 33 FR 967, Jan. 26, 1968] MAIN COMPONENT REQUIREMENTS ## §29.547 Main and tail rotor structure. - (a) A rotor is an assembly of rotating components, which includes the rotor hub, blades, blade dampers, the pitch control mechanisms, and all other parts that rotate with the assembly. - (b) Each rotor assembly must be designed as prescribed in this section and must function safely for the critical flight load and operating conditions. A design assessment must be performed, including a detailed failure analysis to identify all failures that will prevent continued safe flight or safe landing, and must identify the means to minimize the likelihood of their occurrence. - (c) The rotor structure must be designed to withstand the following loads prescribed in §§ 29.337 through 29.341 and 29.351: - (1) Critical flight loads. - (2) Limit loads occurring under normal conditions of autorotation. - (d) The rotor structure must be designed to withstand loads simulating— - (1) For the rotor blades, hubs, and flapping hinges, the impact force of each blade against its stop during ground operation; and - (2) Any other critical condition expected in normal operation. - (e) The rotor structure must be designed to withstand the limit torque at any rotational speed, including zero. In addition: - (1) The limit torque need not be greater than the torque defined by a torque limiting device (where provided), and may not be less than the greater of— - (i) The maximum torque likely to be transmitted to the rotor structure, in either direction, by the rotor drive or by sudden application of the rotor brake; and - (ii) For the main rotor, the limit engine torque specified in §29.361. - (2) The limit torque must be equally and rationally distributed to the rotor blades. (Secs. 604, 605, 72 Stat. 778, 49 U.S.C. 1424, 1425) [Doc. No. 5084, 29 FR 16150, Dec. 3, 1964, as amended by Amdt. 29-4, 33 FR 14106, Sept. 18, 1968; Amdt. 29-40, 61 FR 21907, May 10, 1996]